Faculty of Computers and Artificial Intelligence / x
CS222: Computer Architecture /IR
Lo === S

Lab no 06: MIPS Assembly

The purpose of this Lab is to learn:
1) Translate a program from a high-level language into
machine language.
2) Simulate and verify MIPS assembly programs and track

MIPS registers.

Parts: -

1. Introduction to translating and starting a program.
2. Case-study from high-level C language to machine code.

3. Hands-on MIPS assembly and Simulation of MIPS program.

Page 1 of 8

Faculty of Computers and Artificial Intelligence / \‘
CS222: Computer Architecture W/ Lo AN
Lo === S

Part 1. Introduction to translating and starting a program

Refer to section 6. 6. 2, 2nd Edition of “Digital Design and Computer Architecture” By
David and Sarah Harris

The figure below shows the steps to translate a program from a
high-level language into machine language and to start executing
that program. First, the high-level code is compiled into assembly
code. The assembly code is assembled into machine code in an
object file. The linker combines the machine code with object
code from libraries and other files to produce an entire
executable program.

High Level Code

v

[Compiler]
v

Assembly Code
v

[Assembler]

Object Files

ObjectFile | iprary Files

[Linker

Executable

v

[Loader]

v

Memory

In practice, most compilers perform all three steps of compiling,
assembling, and linking. Finally, the loader loads the program
into memory and starts execution.

Step 1: Compilation

A compiler translates high-level code into assembly language.
Code Example 6.30 shows a simple high-level program with
three global variables and two functions, along with the assembly

Page 2 of 8

|| 2

<
VORIV R

Faculty of Computers and Artificial Intelligence / x
CS222: Computer Architecture ‘/:ﬁ S A NS
\/

code produced by a typical compiler. The .data and .text
keywords are assembler directives that indicate where the text
and data segments begin. Labels are used for global variables f,
g, and y. Their storage location will be determined by the
assembler; for now, they are left as symbols in the code.

Code Example 6.30 COMPILING A HIGH-LEVEL PROGRAM

High-Level Code MIPS Assembly Code

int f, g, y: // global variables .data

int main(void)

i £sp, $sp, —4 # make stack frame
Fo2, fra, 0($sp) #store $ra onstack
_ . 30, #35a0=2
g=3; f f#f=
y = sum(f addi $al, 30,3 #sal=3
return y; #og=13
} # call sum function
y #y=sum(f, g)

Sra, 0(%sp) { re $ra fromstack
addi $sp. $sp., 4 # restore stack pointer
jr $ra # return to operating system

int sum(int a, int b) { sum:
return (a +b); add $v0, $a0, sal #sv0=a+b
} jr $ra # return to caller

Step 2: Assembling

The assembler turns the assembly language code into an object
file containing machine language code. The assembler makes
two passes through the assembly code.

On the first pass, the assembler assigns instruction addresses
and finds all the symbols, such as labels and global variable

names. The code after the first assembler pass is shown here.
0x00400000 main: addi $sp, $sp, -4

0x00400004 sw $ra, 0($sp)
0x00400008 addi $a0, 30, 2
0x0040000C sw $a0, f
0x00400010 addi %$al, %0, 3
0x00400014 sw $al, g
0x00400018 jal sum
0x0040001C sw o $v0, y
0x00400020 Tw $ra, 0($sp)
0x00400024 addi $sp, $sp, 4
0x00400028 jr $ra
0x0040002C sum: add $v0, $a0, $al
0x00400030 jr $ra

Page 3 of 8

Faculty of Computers and Artificial Intelligence / \‘
CS222: Computer Architecture W/ Lo AN
Lo === S

'
Viy

The names and addresses of the symbols are kept in a symbol
table, as shown in Table 6.4 for this code. The symbol addresses
are filled in after the first pass, when the addresses of labels are
known. Global variables are assigned storage locations in the
global data segment of memory, starting at memory address
0x10000000.

Table 6.4 Symbol table

Symbol Address

f 0x10000000

g 0x10000004

y 0x10000008

main 0x00400000

sum 0x0040002C

On _the second pass, the assembler produces the machine
language code. Addresses for the global variables and labels are
taken from the symbol table. The machine language code and
symbol table are stored in the object file.

Step 2: Linking

Most large programs contain more than one file. In our example,
there is only one object file, so no relocation is necessary. Figure
6.33 shows the executable file. It has three sections:

e The executable file header, the text segment, and the data
segment. The executable file header reports the text size
(code size) and data size (amount of globally declared
data). Both are given in units of bytes.

e The text segment gives the instructions in the order that
they are stored in memory.

e The data segment gives the address of each global
variable.

The figure shows the instructions in human-readable format next

to the machine code for ease of interpretation, but the executable
file includes only machine instructions.

Page 4 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

Executable file header Text Size Data Size
0x34 (52 bytes) 0xC (12 bytes)
Text segment Address Instruction

0x00400000 0x23BDFFFC addi $sp, $sp, 4
0x00400004 OXAFBFO000 sw $ra, 0($sp)
0x00400008 0x20040002 addi $a0, $0, 2
0x0040000C OxAF848000 sw $a0, Ox8000(5gp)
0x00400010 0x20050003 addi $at, $0, 3
0x00400014 DXAF858004 sw $al, OxB004($gp)
0x00400018 0Xx0C10000B jal 0x0040002C
0x0040001C OXAF828008 sw $v0, 0x8008($gp)
0x00400020 0X8FBFD000 Iw $ra, O($sp)
0x00400024 0x23BD0004 aaddi $sp, $sp, -4
0x00400028 0x03E00008 jr Sra

0x0040002C 0x0D0851020 add $v0, $a0, 3a
0x00400030 0x03E00008 Jr Sra

Data segment Address Data

0x%10000000 f

0%10000004 g

0x%10000008 y

Figure 1. Executable file

Step 4: Loading

The operating system loads a program by reading the text
segment of the executable file from a storage device (usually the
hard disk) into the text segment of memory. Figure 6.34 shows
the memory map at the beginning of program execution.

Page 5 of 8

Faculty of Computers and Artificial Intelligence / \\‘
CS222: Computer Architecture ‘/%1 N
» ™ =T

Loty m=— Ty
VORIV R
Address Memory
Reserved
Ox7FFFFFFC Stack «— $sp = 0xX7FFFFFFC
0x10010000 Heap
. <«—$gp = 0x10008000
¥
g
0x10000000 f)
Figure 6.34 Executable loaded
in memory
0x03E00008
0x00851020
0x03E00008
0x23BD0004
0x8FBF0000
OxAF828008
0x0C10000B
OxAFB858004
0x20050003
OXAF848000
0x20040002
OxAFBFO000
0x00400000 0x23BDFFFC «—PC = 0x00400000
Reserved

Part 2. Case-study from high-level C language to machine
code

Exercise 6.11 Each number in the Fibonacci series is the sum of
the previous two numbers. Table 6.16 lists the first few numbers
in the series, fib(n).

Table 6.16 Fibonacci series

n 1 2 3 4 5 6 7 8 9 10 11

fib(n) 1 1 2 3 5 8 13 21 34 55 89

(1) Write a function called fib in a high-level language that
returns the Fibonacci number for any nonnegative value of n.
Hint: You probably will want to use a loop. Clearly comment
your code.

Page 6 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture | ¢é1x\:§

Land’> L

(2) Convert the high-level function of the part (2) into MIPS
assembly code. Add comments after every line of code that
explain clearly what it does.

(3) Convert the MIPS assembly code of the part (3) into
machine code.

(4) generate the executable file, as shown in Figure 1.

Part 3. Hands-on MIPS assembly

In the lecture, we study the basics of C language including the
conditions statements like if and if/else, the loops statements like
while/for, and arrays. Refer to the for-loop example in the lecture
below,

// C Code
// add the powers of 2 from 1 to 100
int sum = 0O;
int 1i;
for (i=1; 1 < 101; 1 = i*2) {
sum = sum + 1i;

}
The Translation of C code above into MIPS assembly is as follow:
MIPS assembly code

$sO0 = i, $sl = sum
addi $s1, $0, O
addi $s0, $0, 1
addi $t0, $0, 101

loop: slt S$tl1, $s0, $tO
beqg S$tl1, $0, done
add sl, Ssl1, $sO
sll $s0, $s0, 1
] loop

done:

Page 7 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

Simulate the MIPS assembly code using the WeMIPS simulator:
e Go to: http://rivoire.cs.sonoma.edu/cs351/wemips/
e Copy the above assembly program into the code window on
the left.
e Debug the program step by step and check the value of the
registers.

Note: Replace $0 with $zero

(in] WeMips: Online Mips Emulator X | & - o b4
. . R\
C @A A Notsecure | rivoire.cs.sonoma.edu/cs351/wemip:) 3 @ @ * B & a3 b CS‘(,NH' gj
Line Gy Show/Hide Dem: u D
tot sure what to do now? Enter your mips code here Step || Run | & Enable auto switching
and hit step (to run me) or
hit run (to th s T A \ stk e
Keep an eye on tl nd stack tracker
to see what changes are being made to them. E08 727
If you want to preload the stack or some registers stz 810
with data, you can click on them to change edit them. i
s2: 965
If you would like more infomation, check out the user 3 a7
guide linked in the menu.
s4: 729
s 55
I $s0, $zero, 10 o o
DOI $51, 52§r03 9 s6: 4
SB $50, -10($s .
SB $s1, -g(éspg s7: 449
LB $s2, -9;&55)
ADDI $sp, $sp, -1
ADDI $sp, $sp, -2
DDI $sp, $sp, -3
ADDI $sp, 3sp, -5
ADDI $sp, $sp, -9
ADDI $sp, $sp, -14
DDT $sp, $sp, -23
DOI $sp, $sp, -37
LB $s3, @(3$sp)

Page 8 of 8

http://rivoire.cs.sonoma.edu/cs351/wemips/

