

Page 1 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

Lab no 06: MIPS Assembly

The purpose of this Lab is to learn:

1) Translate a program from a high-level language into

machine language.

2) Simulate and verify MIPS assembly programs and track

MIPS registers.

Parts: -

1. Introduction to translating and starting a program.

2. Case-study from high-level C language to machine code.

3. Hands-on MIPS assembly and Simulation of MIPS program.

Page 2 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

Part 1. Introduction to translating and starting a program

Refer to section 6. 6. 2, 2nd Edition of “Digital Design and Computer Architecture” By

David and Sarah Harris

The figure below shows the steps to translate a program from a
high-level language into machine language and to start executing
that program. First, the high-level code is compiled into assembly
code. The assembly code is assembled into machine code in an
object file. The linker combines the machine code with object
code from libraries and other files to produce an entire
executable program.

In practice, most compilers perform all three steps of compiling,
assembling, and linking. Finally, the loader loads the program
into memory and starts execution.

Step 1: Compilation

A compiler translates high-level code into assembly language.
Code Example 6.30 shows a simple high-level program with
three global variables and two functions, along with the assembly

Assembly Code

High Level Code

Compiler

Object File

Assembler

Executable

Linker

Memory

Loader

Object Files

Library Files

Page 3 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

code produced by a typical compiler. The .data and .text
keywords are assembler directives that indicate where the text
and data segments begin. Labels are used for global variables f,
g, and y. Their storage location will be determined by the
assembler; for now, they are left as symbols in the code.

Step 2: Assembling

The assembler turns the assembly language code into an object
file containing machine language code. The assembler makes
two passes through the assembly code.
On the first pass, the assembler assigns instruction addresses
and finds all the symbols, such as labels and global variable
names. The code after the first assembler pass is shown here.

Page 4 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

The names and addresses of the symbols are kept in a symbol
table, as shown in Table 6.4 for this code. The symbol addresses
are filled in after the first pass, when the addresses of labels are
known. Global variables are assigned storage locations in the
global data segment of memory, starting at memory address
0x10000000.

On the second pass, the assembler produces the machine
language code. Addresses for the global variables and labels are
taken from the symbol table. The machine language code and
symbol table are stored in the object file.

Step 2: Linking

Most large programs contain more than one file. In our example,
there is only one object file, so no relocation is necessary. Figure
6.33 shows the executable file. It has three sections:

• The executable file header, the text segment, and the data
segment. The executable file header reports the text size
(code size) and data size (amount of globally declared
data). Both are given in units of bytes.

• The text segment gives the instructions in the order that
they are stored in memory.

• The data segment gives the address of each global
variable.

The figure shows the instructions in human-readable format next
to the machine code for ease of interpretation, but the executable
file includes only machine instructions.

Page 5 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

Step 4: Loading

The operating system loads a program by reading the text
segment of the executable file from a storage device (usually the
hard disk) into the text segment of memory. Figure 6.34 shows
the memory map at the beginning of program execution.

Figure 1. Executable file

Page 6 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

Part 2. Case-study from high-level C language to machine

code

Exercise 6.11 Each number in the Fibonacci series is the sum of
the previous two numbers. Table 6.16 lists the first few numbers
in the series, fib(n).

(1) Write a function called fib in a high-level language that
returns the Fibonacci number for any nonnegative value of n.
Hint: You probably will want to use a loop. Clearly comment
your code.

Page 7 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

(2) Convert the high-level function of the part (2) into MIPS
assembly code. Add comments after every line of code that
explain clearly what it does.

(3) Convert the MIPS assembly code of the part (3) into
machine code.

(4) generate the executable file, as shown in Figure 1.

Part 3. Hands-on MIPS assembly

In the lecture, we study the basics of C language including the

conditions statements like if and if/else, the loops statements like

while/for, and arrays. Refer to the for-loop example in the lecture

below,

// C Code

// add the powers of 2 from 1 to 100

int sum = 0;

int i;

for (i=1; i < 101; i = i*2) {

 sum = sum + i;

}

The Translation of C code above into MIPS assembly is as follow:

MIPS assembly code

$s0 = i, $s1 = sum

 addi $s1, $0, 0

 addi $s0, $0, 1

 addi $t0, $0, 101

loop: slt $t1, $s0, $t0

 beq $t1, $0, done

 add $s1, $s1, $s0

 sll $s0, $s0, 1

 j loop

done:

Page 8 of 8

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

Simulate the MIPS assembly code using the WeMIPS simulator:

• Go to: http://rivoire.cs.sonoma.edu/cs351/wemips/

• Copy the above assembly program into the code window on

the left.

• Debug the program step by step and check the value of the

registers.

Note: Replace $0 with $zero

http://rivoire.cs.sonoma.edu/cs351/wemips/

